

30V, Ultra-Low 2uA Iq, Low Noise LDO Regulators

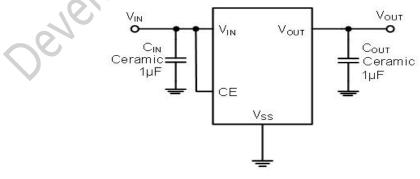
FEATURES

- Low Dropout Voltage: 550mV@100mA
- Low Quiescent Current: 2µA(typ.)
- High Ripple Rejection: 65dB@1kHz
- Operating Voltage Range: 4.5V ~ 30V
- Fix Output Voltage: 2V、2.4V、2.8V、3V、3.3V、 3.6V、4V、4.4V、5.0V
- High Accuracy: ±2% (Typ.)
- Low Output Noise: 27xV_{OUT} μVRMS (10Hz~100kHz)
- 250mA Output Current
- Built-in Thermal shutdown and Short-Circuit Protection
- Available in Green SOT89-3 、SOT23-3 Packages

DESCRIPTIONS

The DP31331 series are a group of positive voltage regulators manufactured by CMOS technologies with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input-output voltage is small.

DP31331 series can deliver 300mA output The current and allow an input voltage as high as 18V. series are very suitable for The the battery-powered equipments, such as RF applications and other systems requiring a quiet voltage source.

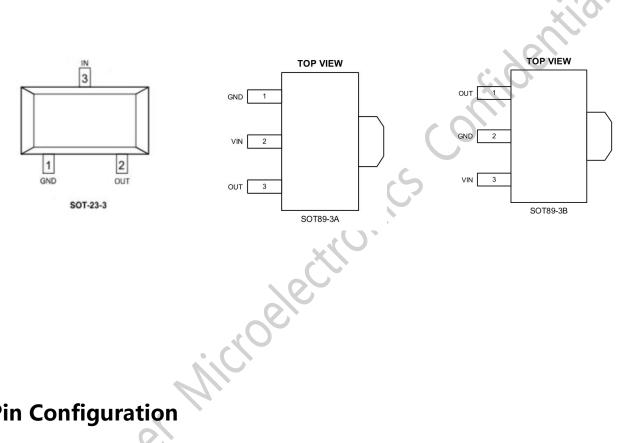

APPLICATIONS

- Power Meter
- Multicell Battery Powered Equipment
- Communication equipment
- Smoke Detector
- Audio/Video Equipment
- LED Driver

ORDERING INFORMATION

Part Number	Description
SOT23-3	Pb free in T&R, 3000 Pcs/Reel
SOT89-3	Pb free in T&R, 1000 Pcs/Reel

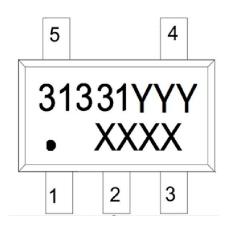
TYPICAL APPLICATION CIRCUIT


www.depuw.com

The content of the document is a trade secret, without permission, any organization or individual shall not be copied and disseminated in any form!

PRODUCT DESCRIPTION

Pin Arrangement


Pin Configuration

SOT23-3	SOT89-3A	SOT89-3B	Pin Name	Description
1		2	GND	Ground.
2	2	3	VIN	Input Supply of the LDO.
3	3	1	OUT	Regulator Output Pin. It is recommended to use a ceramic capacitor with effective capacitance in the range of 2.2µF to 10µF to ensure stability. This ceramic capacitor should be placed as close as possible to OUT pin.

Filder

> Marking Information

DP31331 for product name:

YYY refers to the following table description, represents different packaging and special output voltage

XXXX The first X represents the last year,2020 is 0;The second X represents the month,inA-L 12 letters;The third and fourth X on behalf of the date,01-31said;

Marking	Model	VOUT Voltage	PACKAGE
31-20	DP31331-20AST	2.0V	SOT23-3
31-24	DP31331-24AST	2.4V	SOT23-3
31-28	DP31331-28AST	2.8V	SOT23-3
31-30	DP31331-30AST	3.0V	SOT23-3
31-33	DP31331-33AST	3.3V	SOT23-3
31-40	DP31331-40AST	4.0V	SOT23-3
31-44	DP31331-44AST	4.4V	SOT23-3
31-50	DP31331-50AST	5.0V	SOT23-3
31A-20	DP31331-20BST	2.0V	SOT89-3A

DP31331 30V,250mA Ultra-Low lo Linear Regulator

31A-24	DP31331-24BST	2.4V	SOT89-3A
31A-28	DP31331-28BST	2.8V	SOT89-3A
31A-30	DP31331-30BST	3.0V	SOT89-3A
31A-33	DP31331-33BST	3.3V	SOT89-3A
31A-40	DP31331-40BST	4.0V	SOT89-3A
31A-44	DP31331-44BST	4.4V	SOT89-3A
31A-50	DP31331-50BST	5.0V	SOT89-3A
31B-20	DP31331-20CST	2.0V	SOT89-3B
31B-24	DP31331-24CST	2.4V	SOT89-3B
31B-28	DP31331-28CST	2.8V	SOT89-3B
31B-30	DP31331-30CST	3.0V	SOT89-3B
31B-33	DP31331-33CST	3.3V	SOT89-3B
31B-40	DP31331-40CST	4.0V	SOT89-3B
31B-44	DP31331-44CST	4.4V	SOT89-3B
31B-50	DP31331-50CST	5.0V	SOT89-3B
Cevel	0K		
-010			

www.depuw.com

The content of the document is a trade secret, without permission, any organization or individual shall not be copied and disseminated in any form!

Absolute Maximum Ratings

Over operating temperature range (unless otherwise noted)(1)

PARAMETER		Min	Мах	Unit
VIN Voltage ⁽¹⁾		-0.3	32	V
EN Voltage		-0.3	32	V
VOUT Voltage ⁽²⁾		2.0	5	V
Output Current		-	250	mA
	SOT89-3A	-	500	mW
Power Dissipation	SOT89-3B	-	500	mW
	SOT23-3	-	200	mW
Operating free air temperature range	9	-40	85	°C
Operating junction temperature,TJ		-40	150	°C
Storage temperature, Tstg		-65	150	°C
Lead Temperature (Soldering, 10se	c.)	<u>401</u>	260	°C

Note:(1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute - maximum - rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal

Recommended Operating Conditions

PARAMETER	Min	Max	Unit
VIN Voltage(V _{IN})	4.5	30	V
VOUT Voltage(Vout)	2	5	V
Output current(Iout)	-	250	mA
L	-40	125	°C

Note : (1)All limits specified at room temperature (TA = 25°C) unless otherwise specified. All room temperature limits are 100% production tested. All limits at temperature extremes are ensured through correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).

> ESD Ratings

PARAMETER	Description	Value	Unit
НВМ	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)	±2000	V
CDM	Charged-device model (CDM), per JEDEC specification JESD22-C101(2)	±200	V

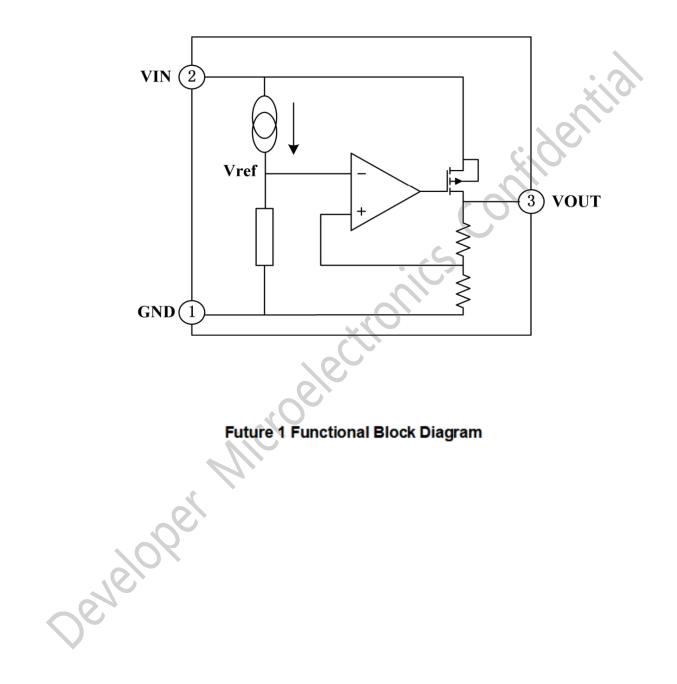
Note : (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

> Thermal Information

THERMAL METRIC	Description	SOT89-3A	SOT89-3B	SOT23-3	Unit
R _{θJA}	Junction-to-ambient thermal resistance(1)(2)	55	55	208	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	88	88	112	°C/W
R _{θJB}	Junction-to-board(Bottom) thermal resistance	9.6	9.6	56	°C/W
Ψιτ	Junction-to-top characterization parameter	6.2	6.2	9.2	°C/W
Ψյв	Junction-to-board characterization parameter	9.7	9.7	52	°C/W

Note (1): The package thermal impedance is calculated in accordance to JESD 51-7.


Note (2): Thermal Resistances were simulated on a 4-layer, JEDEC board

Developer

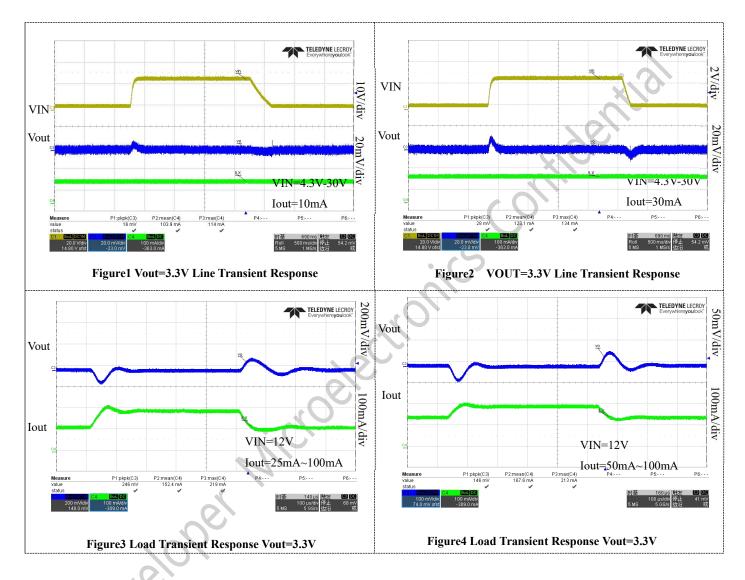
www.depuw.com

BLOCK DIAGRAM

www.depuw.com

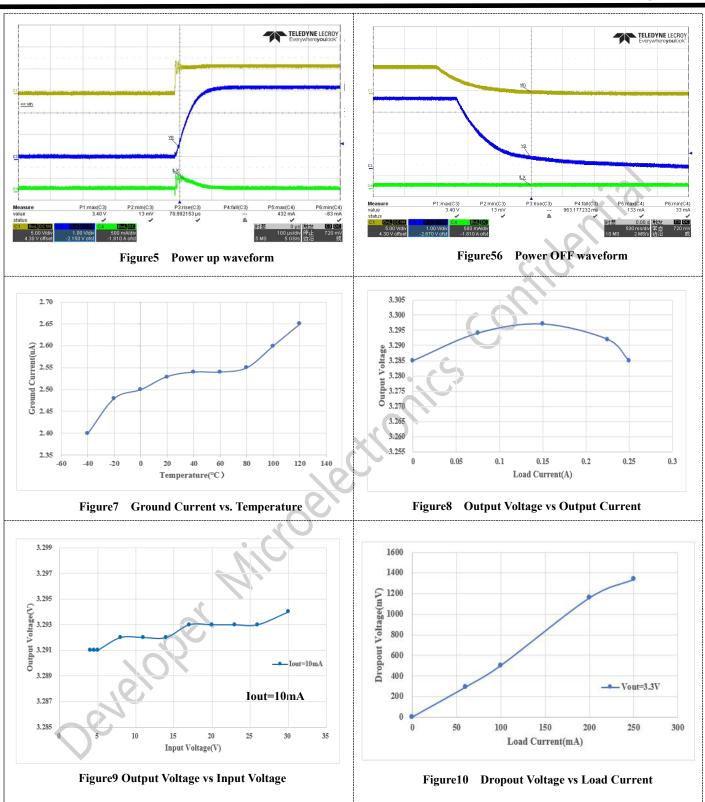
ELECTRICAL CHARACTERISTICS

$V_{IN}=V_{OUT}+1V$, $C_{IN}=C_{OUT}=1\mu F$, $T_A=25^{\circ}C$, unless otherwise specified


Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Input Voltage	V _{IN}	-	4.5	-	30	V
Output Voltage	Vout	I _{OUT} =1mA	VOUT* 0.99	-	VOUT* 1.01	V
Supply Current	IQ	I _{OUT} =0mA		2	2	uA
Output Current	I _{OUT}	-		250		mA
Dropout Voltage		lout=60mA Vout=5V	Ç.	250		mV
Diopout voltage	Vdrop	lout=100mA Vout=5V		450		mV
Load Regulation	<u>∆</u> Vо∪т	V _{IN} = V _{OUT} +1V, 1mA≤I _{OUT} ≤100mA		10		mV
Line Regulation	$\frac{\Delta V_{OUT}}{V_{OUT} \times \Delta V_{IN}}$	Ι _{ΟυΤ} =10mΑ V _{ΟυΤ} +1V≤V _{IN} ≤18V		0.01	0.2	%/V
Output Voltage Temperature Characteristics	$\frac{\Delta V_{OUT}}{V_{OUT} \times \Delta T_A}$	I _{OUT} =10mA -40≤T≤+85℃		50		ppm
Output Current Limit	I _{LIM}	V_{OUT} = 0.5 x $V_{OUT(Normal)}$, V_{IN} = 5V		500		mA
Short Current	Ishort	Vout=0V		60		mA
		F=100HZ lout=50mA		65		
Power Supply		F=1KHZ lout=50mA		60		
Rejection Rate	PSRR	F=10KHZ lout=50mA		50		dB
		F=100KHZ lout=50mA		45		
Over-Temperature Protection	Tsd			160		°C
Over-Temperature Protection hysteresis	△Tsd			20		°C

www.depuw.com

TYPICAL CHARACTERISTICS


TJ = +25 °C, VIN = (VOUT(NOM) + 1V) (whichever is greater), VEN = VIN, CIN = COUT = 1µF, unless otherwise noted.

0

www.depuw.com

www.depuw.com

The content of the document is a trade secret, without permission, any organization or individual shall not be copied and disseminated in any form!

Functions Description

• Feature Description

The DP31331 series are a group of positive voltage regulators manufactured by CMOS technologies with high ripple rejection, ultra-low noise, low power consumption and low dropout voltage, which can prolong battery life in portable electronics.

The DP31331 series work with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications.

The DP31331 series consume less than 0.1µA in shutdown mode and have fast turn-on time less than 50µS.The series are very suitable for the battery-powered equipment,

• Thermal Shutdown

The internal thermal-shutdown circuitry forces the device to stop switching if the junction temperature exceeds 160 ° C typically. Once the junction temperature falls below the falling threshold, the device returns to normal operation automatically.

• Output Current Limit and Short-Circuit

Protection

When overload events happen, the output current is internally limited to 500mA (TYP). When the OUT pin is shorted to ground, the short-circuit protection will limit the output current to 100mA (TYP).

11

www.depuw.com

APPLICATION INFORMATION

The DP31331 is a low VIN, ultra-low noise and low dropout LDO and provides 500mA output current.

These features make the device a reliable solution to solve many challenging problems in the generation of clean and accurate power supply.

The high performance also makes the DP31331 useful in a variety of applications. The DP31331 provides the protection functions for output overload, output short-circuit condition and overheating.

The DP31331 provides an EN pin as an external chip enable control to enable/disable the device. When the regulator is in shutdown state, the shutdown current consumes as low as 0.03µA (TYP).

• Input capacitors selection

The input decoupling capacitor should be placed as close as possible to the IN pin to ensure the device stability. 1μ F or larger X7R or X5R ceramic capacitor is selected to get good dynamic performance. When VIN is required to provide large current instantaneously, a large effective input capacitor is required. Multiple input capacitors can limit the input tracking inductance. Adding more input capacitors is available to restrict the ringing and to keep it below the device absolute maximum ratings.

Developer

• Output capacitors selection

The output capacitor should be placed as close as possible to the OUT pin. 1μ F or larger X7R or X5R ceramic capacitor is selected to get good dynamic performance. The minimum effective capacitance of COUT that DP31331 can remain stable is 1μ F. For ceramic capacitor, temperature, DC bias and package size will change the effective capacitance, so enough margin of COUT must be considered in design. Additionally, COUT with larger capacitance and lower ESR will help increase the high frequency PSRR and improve the load transient response.

12

www.depuw.com

• PCB Layout

PCB layout is a critical portion of good power supply design. The following guidelines will help users design a PCB with the best power conversion efficiency, thermal performance

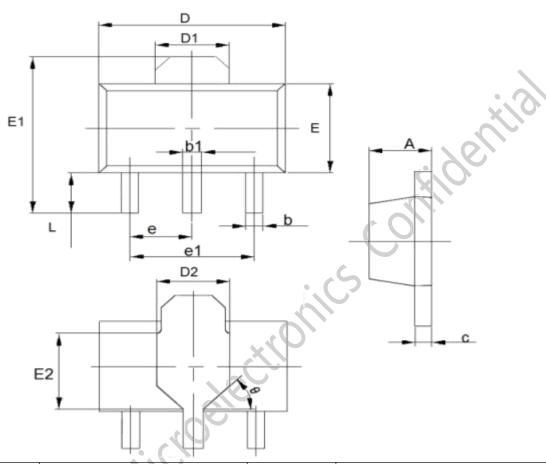
1. The input bypass capacitor C5 and C2 must be placed as close as possible to the VIN pin and ground. Grounding for both the input and output capacitors should consist of localized top side planes that connect to the GND pin and PAD. It is a good practice

to place a ceramic cap near the VIN pin to reduce the high frequency injection current.

2. The output capacitor, COUT should be placed close to the junction of Vout Pin.

3. The ground connection for C3, C4, C8 and C5, C2 should be as small as possible and connect to system ground plane at only one spot (preferably at the COUT ground point) to minimize injecting noise into system ground plane.

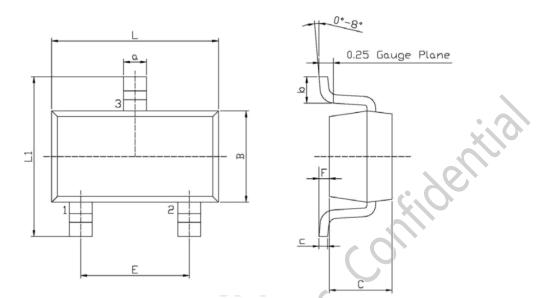
4. Large GND Copper Pour near IC is recommended to minimize the heat of IC.



www.depuw.com

PACKAGE DIMENSION

SOT89-3



Symbol	Dimensions in Millimeters		Symbol	Dimensions in	Millimeters
Symbol	Min	Max	J	Min	Мах
A	1.4	1.6	E1	3.94	4.4
b	0.32	0.52	E2	1.9(TY	P)
b1	0.4	0.58	е	1.5(TY	P)
с	0.35	0.45	L	0.8	1.2
D	4.4	4.6	θ	45°	
D1	1.55(T	YP)			
D2	1.75(T	YP)			
e1	3.0(TY	′P)			
E	2.3	2.6			

www.depuw.com

SOT23-3

Symbol	Dimensions in N	Aillimeters
Symbol	Min	Max
L	2.82	3.02
В	1.50	1.70
С	0.90	1.30
L1	2.60	3.00
E	1.80	2.00
а	0.35	0.50
с	0.10	0.20
b	0.30	0.55
F	0	0.15
lelok		

www.depuw.com

OFFICIAL ANNOUNCEMENT

Division I will ensure the accuracy and reliability of the product specification document, but we reserve the right to independently modify the content of the specification document without prior notice to the customer. Before placing an order, customers should contact us to obtain the latest relevant information and verify that this information is complete and up-to-date. All product sales are subject to the sales terms and conditions provided by our company at the time of order confirmation.

Division I will periodically update the content of this document. Actual product parameters may vary due to differences in models or other factors. This document does not serve as any express or implied guarantee or authorization.

The product specification does not include any authorization for the intellectual property owned by our company or any third party. With respect to the information contained in this product specification, we make no explicit or implied warranties, including but not limited to the accuracy of the specification, its fitness for commercial use, suitability for specific purposes, or non-infringement of our company's or any third party's intellectual property. We also do not assume any responsibility for any incidental or consequential losses related to this specification document and its use.

We do not assume any obligations regarding application assistance or customer product design. Customers are responsible for their own use of our company's products and applications. In order to minimize risks associated with customer products and applications, customers should provide thorough design and operational safety validation.

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Once discovered, the company will pursue its legal responsibility according to law and compensate for all losses caused to the company.

Please note that the product is used within the conditions described in this document, paying particular attention to the absolute maximum rating, operating voltage range, and electrical characteristics. The Company shall not be liable for any damage caused by malfunctions, accidents, etc. caused by the use of the product outside the conditions stated in this document.

Division I has been committed to improving the quality and reliability of products, but all semiconductor products have a certain probability of failure, which may lead to some personal accidents, fire accidents, etc.When designing products, pay full attention to redundancy design and adopt safety indicators, so as to avoid accidents.

When using our chips to produce products, Division I shall not be liable for any patent dispute arising from the use of the chip in the product, the specification of the product, or the country of import, etc., in the event of a patent dispute over the products including the chip.